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Solution 7

1. Determine whether Z and Q are complete sets in R.

Solution. Z is a closed subset so it is complete. On the other hand, the closure of Q is
R, it is not complete.

2. Does the collection of all differentiable functions on [a,b] form a complete set in C[a, b] ?

Solution. No. Since C|a,b] is complete, it suffices to show that the set of differentiable
functions is not closed. But this is easy, I leave you to verify the sequence of differentiable
functions f,,(x) = (1/n + 22)Y/? in C[~1, 1] converges uniformly to the non-differentiable
function f(z) = |x|.

3. Let (X,d) be a metric space and Cp(X) the vector space of all bounded, continuous
functions in X. Show that it forms a complete metric space under the sup-norm. This
problem will be used in the next problem.

Solution. Let {f,} be a Cauchy sequence in Cy(X). For ¢ > 0, there exists n; such that

[fo(@) = fm(@)] < Ifn = [l <&, VzeX. (1)

It shows that {f,(z)} is a numerical Cauchy sequence, so lim,,_,~ fn(z) exists. We define
f(x) = limy—y00 frn(x). We check it is continuous at z( as follows. By passing m — oo in
(1), we have

[f (@)= f (o) < f (@)= Fry (€)[F+]fns (@)= Fy (20) [+ fr (w0) = f (20)| < 26+ frn, () = fry (20)].

As fp, is continuous, there is some ¢ such that |f,, (x) — fn,(z0)| < € for x € Bs(xp). It
follows that we |f(z) — f(zo)| < 3¢ for = € Bs(xo), so f is continuous at zg. Now, letting
m — oo in (1), we get | f(z) — f(z)| < e forall n > ny, so f,, — f uniformly. In particular,
it means f is bounded.

4. We define a metric on N, the set of all natural numbers by setting

1 1

n m

d(n,m) =

(a) Show that it is not a complete metric.

(b) Describe how to make it complete by adding one new point.

Solution. The sequence {n} is a Cauchy sequence in this metric but it has no limit. Its
completion is obtained by adding an ideal point called oo and define d(z,y) = d(z,y) when
x,y € Z and d(x,00) = 0 for all x € Z or oo.

5. Optional. Let (X, d) be a metric space. Fixing a point p € X, for each x define a function
fx(z) = d(Z,SU) - d(Z,p)

(a) Show that each f; is a bounded, uniformly continuous function in X.

(b) Show that the map = — f, is an isometric embedding of (X, d) to C,(X) (shorthand
for Cp(X,R)) . In other words,

| fo = fylloo = d(z,y), Vz,ye X.

(¢) Deduce from (b) the completion theorem.
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This approach is much shorter than the proof given in notes. However, it is not so inspiring.

Solution.

(a) From [fa(2)] = d(z,2) — d(z,p)| < d(z,p), and from |fa(2) — fu()] < |d(z,) —
d(Z',z)|+1d(Z,p)—d(z,p)| < 2d(z,7"), it follows that each f, is a bounded, uniformly
continuous function in X.

(b) |fe(2) = fy(2)] = |d(z,z) — d(z,y)| < d(z,y), and equality holds taking z = . Hence
fo_fyHoo:d(ﬂfyy), V%?/EX-

(c) Let Yo ={fz : 2 € X} C C3(X). Let Y be the closure of Y in the complete metric
space (Cy(X), p) with sup-norm p. Then (Y, p) is a completion of (X, d).

6. Let f: F — Y be a uniformly continuous map where £ C X and X,Y are metric spaces.
Suppose that Y is complete. Show that there exists a uniformly continuous map F' from
E to Y satisfying F = f in E. In other words, f can be extended to the closure of E
preserving uniform continuity.

Solution. Let z € FE. There exists {z,,} C E,z,, — x. Since {z,} is a Cauchy sequence,
by uniformly continuity { f(x,)} is also a Cauchy sequence in Y. As Y is complete, { f(z,)}
converges to some point in Y. Therefore, we can define F(z) = limy, o f(zy). It remains
to show this definition is independent of the sequence {z,}. Indeed, let {y,},yn — x.
We claim limy, o0 f(yn) = limyoo f(z,). It suffices to set z9,41 = x, when n is odd
and zo, = y, to form a new sequence {z,}. This sequence again is a Cauchy sequence,
so {f(zn)} is convergent. As both {z,} and {y,} are subsequences of it, {f(z,)} and
{f(yn)} tend to the same limit. Now, it is clear that the new function F' extends f and is
uniformly continuous on the closure of F.

Note. We have used this property in the proof of Theorem 3.4. Observe that a contraction
is always uniformly continuous.

7. Consider maps from R to itself. Provide explicit examples of continuous maps with exactly
one, two and three fixed, and one map satisfying |f(z) — f(y)| < |x —y| but no fixed points.

Solution. Let f be our function. We consider g(z) = f(x) — z. It suffices to produce
examples with exactly one, two and three roots. For instance, gi(x) = —z has exactly
one root. ga(w) = x2 — 1 has exactly two roots. g3(z) = (x — 1)(x — 2)(z — 3) has ex-
actly three roots. The corresponding f1, f2, f3 fulfil our requirement. Finally, the function
f(z) =z +1log(1l 4 e~ *) does not have any fixed point.

8. Let T be a continuous map on the complete metric space X. Suppose that for some k,
T* becomes a contraction. Show that 7' admits a unique fixed point. This generalizes the
contraction mapping principle in the case k = 1.

Solution. Since T* is a contraction, there is a unique fixed point € X such that
Tkz = . Then TFHy = TFTx = Tx shows that Tz is also a fixed point of T*. From the
uniqueness of fixed point we conclude Tx = z, that is, x is a fixed point for 7. Uniqueness
is clear since any fixed point of T is also a fixed point of T*.

9. Show that the equation 2zsinz — z* + 2 = 0.001 has a root near z = 0.
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10.

11.

Solution. Here ¥(z) = 2rsinz — %, We need to find some r,~ so it is a contraction.
We have

(W(21) — W(z2)| = |2mi(sinay — sinag) + 2(z1 — o) sinay — (x] — w%)‘
= |2z1cosc(xr — x2) + 2(z1 — x2) sinay — (22 + 22) (21 + 22) (21 — 2)|
< (2r+74 (20 (2r)|z1 — 22

Taking r = 1/4,7 = 2r +r + (2r?)(2r) = 13/16 < 1. By the Perturbation of Identity

Theorem, the equation 2xsinz — 2% + o = y is solvable for any y satisfying |y| < R =
(1 —~)r = 0.0468, including y = 0.001.

Can you solve the system of equations
r+yt=0, y—a?2=0.0157

Solution. Here we work on R? and ®(z,y) = (z,y) + ¥(x,y) where ¥(z,y) = (—y*, 2?).
In the following points in R? are denoted by p = (x1,%1),q = (72,%2), etc.

% (p) — ¥(q)l2 I(=yi + 3,27 — 23) 2
= [[((y +93) (1 +y2)(y2 — 1), (21 + 22) (21 — T2)]|2
< V(2r2 x 2r)2 4 (2r)2|p — qlla

= 2r(1+4r%)|lp—ql2 -

(We have used |x1 — 22|, |y1 — y2| < |l]p — ¢||2.) Hence by taking » = 1/4,v = 5/8 and
R =3/24=0.125. As 0.015 < 0.125, the system is solvable.

Can you solve the system of equations

r+y—a22=0, x—y+axysiny=—0.0057

Solution. First we rewrite the system in the form of I + ¥. Indeed, by adding up and
subtracting the equations, we see that the system is equivalent to

x+ (—2? + zysiny) /2 = —0.0025, y+ (=% — zysiny)/2 = 0.0025 .

Now we can take

1
U(z,y) = - (—2° + aysiny, —2® — zysiny) ,

2
and proceed as in the previous problem.



